Lysophosphatidylcholine in Oxidized Low-Densit Lipoprotein Increases Endothelial Susceptibility to Polymorphonuclear Leukocyte-Induced Endothelial Dysfunction in Porcine Coronary Arteries Role of Protein Kinase C
نویسندگان
چکیده
We have shown that transferred lysophosphatidylcholine (lysoPC) from oxidized low-density lipoprotein (OxLDL) to endothelial surface membrane activates protein kinase C (PKC) in endothelial cells, suggesting that Ox-LDL could alter endothelial functions through PKC activation. The purposes of the present study were to examine whether the endothelial susceptibility to polymorphonuclear leukocytes (PMNs) may be altered in Ox-LDL-treated coronary arteries, which have properties closely resembling those observed in atherosclerotic arteries, and to determine the mechanism(s) by which Ox-LDL may affect the endothelial susceptibility to PMNs. Isolated porcine coronary arteries were cannulated and perfused with oxygenated culture medium with or without LDLs or lipids at a constant flow (37°C, pH 7.4). The treatment of porcine coronary arteries with Ox-LDL increased endothelial adhesiveness to PMNs and augmented PMNinduced impairment of endothelium-dependent arterial relaxation (EDR). Furthermore, Ox-LDL stimulated the expression of intercellular adhesion molecule-1 (ICAM-1) in the porcine coronary arterial endothelium. These effects of OxLDL were not mediated by the scavenger-receptor-mediated process but were attributed to lysoPC in Ox-LDL. Blocking of the PMN adherence to endothelium by using anti-CD18 monoclonal antibody abolished the PMN-induced impairment of EDR. Coincubation with staurosporine or calphostin C, inhibitors of PKC, during treatment of the arteries with Ox-LDL or lysoPC attenuated the augmentative effects of Ox-LDL and lysoPC on endothelial ICAM-1 expression, endothelial adhesiveness to PMNs, and PMN-induced EDR impairment. Treatment of the arteries with phorbol 12myristate 13-acetate, a potent stimulator of PKC, induced ICAM-1 expression and enhanced the endothelial adhesiveness to PMNs and PMN-induced EDR impairment, mimicking the effects of Ox-LDL. These results suggest that lysoPC in Ox-LDL induces endothelial ICAM-1 expression, which facilitates PMN adherence to endothelium and the subsequent augmentation of PMN-induced EDR impairment. PKC activation in endothelial cells by lysoPC in Ox-LDL may at least in part be involved in these effects of Ox-LDL. LysoPC in Ox-LDL increases endothelial susceptibility to PMN-induced endothelial dysfunction. (Circ Res. 1994;74:565-575.)
منابع مشابه
Role of Protein Kinase C
We have shown that transferred lysophosphatidylcholine (lysoPC) from oxidized low-density lipoprotein (OxLDL) to endothelial surface membrane activates protein kinase C (PKC) in endothelial cells, suggesting that Ox-LDL could alter endothelial functions through PKC activation. The purposes of the present study were to examine whether the endothelial susceptibility to polymorphonuclear leukocyte...
متن کاملProtein kinase C inhibitors prevent impairment of endothelium-dependent relaxation by oxidatively modified LDL.
The mechanism(s) of inhibition of endothelium-dependent relaxation (EDR) by oxidized low-density lipoprotein (Ox-LDL) was examined in isolated porcine coronary arteries and rabbit aortas. Incubation with Ox-LDL but not native LDL caused the inhibition of thrombin- or acetylcholine-induced EDR, whereas A23187-induced EDR was preserved after incubation with Ox-LDL. Lysophosphatidylcholine (lysoPC...
متن کاملOxidized Low Densit Lipoproteins Inhibit Relaxations of Porcine Coronary Arteries Role of Scavenger Receptor and Endothelium-Derived Nitric Oxide
Background. We studied the effects of low density lipoprotein (LDL) on endothelium function. Methods and Results. Porcine epicardial and intramyocardial coronary arteries suspended in organ chambers for isometric tension recording were exposed to LDL for 2 hours and were then washed. In epicardial coronary arteries, oxidized LDL (30-300 ,ug/mI) but not native LDL or lysolecithin inhibited endot...
متن کاملReceptor for advanced glycation end products involved in circulating endothelial cells release from human coronary endothelial cells induced by C-reactive protein
Objective(s): This study was designed to investigate the effect of receptor for advanced glycation end products (RAGE), S100A12 and C-reactive protein (CRP) on the release of circulating endothelial cells (CECs) from human coronary artery endothelial cells (HCAECs). Materials and Methods: HCAECs were cultured in increasing concentration of CRP (0, 12.5, 25, 50μg/ml) or S100A12 protein (0, 4, 1...
متن کاملEffect of quercetin and its metabolite on caveolin-1 expression induced by oxidized LDL and lysophosphatidylcholine in endothelial cells
Oxidized low-density lipoprotein contributes to atherosclerotic plaque formation, and quercetin is expected to exert anti-atherosclerotic effects. We previously reported accumulation of conjugated quercetin metabolites in the aorta of rabbits fed high-cholesterol diets with quercetin glucosides, resulting in attenuation of lipid peroxidation and inhibition of lipid accumulation. Caveolin-1, a m...
متن کامل